Weighted polynomial approximation of entire functions, II

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

Polynomial Approximation of Functions

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

Division of Entire Functions by Polynomial Ideals

In [ASTW] it was given a Grobner reduction based division formula for entire functions by polynomial ideals. Here we give degree bounds where the input function can be truncated in order to compute approximations of the coe cients of the power series appearing in the division formula within a given precision. In addition, this method can be applied to the approximation of the value of the rema...

متن کامل

coupled systems of equations with entire and polynomial functions

we consider the coupled system$f(x,y)=g(x,y)=0$,where$$f(x, y)=bs 0 {m_1}   a_k(y)x^{m_1-k}mbox{ and } g(x, y)=bs 0 {m_2} b_k(y)x^{m_2-k}$$with entire functions $a_k(y), b_k(y)$.we    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

Best Polynomial Approximation in L-Norm and (p, q)-Growth of Entire Functions

and Applied Analysis 3 which vanishes on K except perhaps for a pluripolar subset and satisfies the complex Monge-Ampère equation (see [12]): (dd c V K ) n = 0 on Cn \ K. (16) If n = 1, the Monge-Ampère equation reduces to the classical Laplace equation. For this reason, the functionV K is considered as a natural counterpart of the classical Green function with logarithmic pole at infinity and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1981

ISSN: 0021-9045

DOI: 10.1016/0021-9045(81)90089-7